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ABSTRACT

The Wide Area Augmentation System (WAAS) will
provide real-time differential GPS corrections and integrity
information for aircraft navigation use. The most
stringent application of this system will be precision
approach, where the system guides the aircraft to within a
few hundred feet of the ground. Precision approach
operations require the use of differential ionospheric
corrections. WAAS must incorporate information from
reference stations to create a correction map of the
ionosphere. More importantly, this map must contain
confidence bounds describing the integrity of the
corrections. The confidence bounds must be large enough
to describe the error in the correction, but tight enough to
allow the operation to proceed. The difficulty in
generating these corrections is that the reference station
measurements are not co-located with the aviation user
measurements. For an undisturbed ionosphere over the
Conterminous United States (CONUS), this is not a
problem as the ionosphere is nominally well behaved.
However, a concern is that irregularities in the ionosphere
will decrease the correlation between the ionosphere
observed by the reference stations and that seen by the
user. Therefore, it is essential to detect when such
irregularities may be present and adjust the confidence
bounds accordingly.

The approach outlined in this paper conservatively bounds
the ionospheric errors even for the worst observed
ionospheric conditions to date, using data sets taken from
the operational receivers in the WAAS reference station
network. As we progress through the current solar cycle
and gather more data on the behavior of the ionosphere,
many of our pessimistic assumptions will be relaxed.
This will result in higher availability while maintaining
full integrity.

INTRODUCTION

The nominal or quiet ionosphere above the Conterminous
United States (CONUS) is smooth and easily estimated.
However, there are times when the ionosphere is more
difficult to describe, particularly during geomagnetic and
ionospheric storms. Under disturbed conditions smaller
scale features may be difficult to observe or estimate. The
Wide Area Augmentation System (WAAS) must correct
for the users’ ionospheric delay errors and place strict
confidences on those corrections under all conditions, but
its measurements are not co-located with the users’.
Therefore, we have to translate the knowledge we gain
through our measurements, from their locations, to any
possible user location. The mechanism specified in the
WAAS Minimum Operational Performance Standards
(MOPS) [1] is the vertical ionospheric delay grid. The
MOPS specifies transmission of vertical delay values and
confidences at discrete grid locations. These confidences
must bound the errors not only at the grid locations, but
for all interpolated regions between the grid points. In
addition we must bound the errors both for the nominal
and the disturbed ionosphere.

If we cannot distinguish between nominal and disturbed
conditions, then we must always assume disturbed
conditions are present. Instead, we would prefer to detect
ionospheric irregularities so that we can provide a high
level of service during nominal periods. A reduced level
of service would only be necessary during periods of
detected disturbances. The detection scheme must be
extremely robust in order to provide the necessary level of
protection. The integrity requirements for precision
approach guidance set the probability of hazardously
misleading information below 107 per approach.
Therefore, the chance of an undetected ionospheric
irregularity must be at a similarly small level.
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Figure 1. A two dimensional histogram representing
the distribution of differential vertical delays, after a
planar fit has been removed, versus IPP separation.
This data is for a quiet day. The bar at the right indicates
the number of counts per square.

The detection scheme described in this paper verifies the
consistency of multiple pierce point samples of the
ionosphere. The reference station measurements are fit to
a simple linear model. If the model is in error or the
input measurements or confidences are incorrect, then
statistically the chi-square residual of the fit is affected. If
the consistency of the measurements to the model
becomes too poor, the local model of the ionosphere
cannot be trusted and the confidence bounds must be
increased or the grid point may be declared unusable.

In order to perform the fit we must better understand the
structure of the nominal ionosphere and then investigate
what forms a disturbance might take. The mechanism we
use to describe ionospheric behavior is the decorrelation
function. This function describes how measurements at
one location may differ from the nearby ionosphere.

DECORRELATION FUNCTION

The decorrelation function is used to relate ionospheric
measurements made at one location to ionospheric delay
values at other locations. This function is determined
using post-processed data from reference sites with
multiple receivers. Post-processing with the dual-
frequency carrier phase removes most of the noise
associated with GPS ionospheric code measurements. The
redundancy removes errors from the individual receivers.
The resulting data has very low noise and no observed
receiver artifacts. This so called “supertruth” data is used
to probe the structure of the ionosphere. An additive
decorrelation function can be formed by differencing
adjacent ionospheric measurements and indexing the data
by delay difference versus distance. The delays are first
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Figure 2. A two dimensional histogram representing
the distribution of differential vertical delays, after a
planar fit has been removed, versus IPP separation.
This data represents a disturbed day.

converted from slant to vertical using the thin shell model
assuming a height of 350 km [2].

The data indicate that the expected vertical difference is a
linear function of separation distance [3] [4]. These
results are consistent with an ionosphere locally well
modeled by a plane with some uncertainty about that fit.
This so called zeroth order decorrelation was extended to
remove a planar fit from the data. After the planar fit is
removed, the measurements are differenced again to form
the first order decorrelation function. Figures 1 and 2
show two dimensional histograms of differences in
vertical delay values, versus Ionospheric Pierce Point
(IPP) separation. In this plot a planar fit has first been
removed. The shading shows the number of points in
each square. Figure 1 has data for a quiet day. Notice that
the difference never exceeds 2.2 m throughout.

The observed nominal CONUS first order decorrelation
function derived from the data in Figure 1 has form [3] [4]

0, (eld ) =b )

where el is the elevation angle of the slant measurement
and di, ; is the distance between the two points. Currently
the value of b is set to 35 cm. Note that the final form is
not dependent on either of the variables. There is no
dependency on distance because the planar fit models the
nominal CONUS ionosphere extremely well out to
distances in excess of 2000 km. It was expected that this
decorrelation value would be a function of elevation angle
as it contains error in the obliquity factor conversion from
slant to vertical [5] [6]. However, the data showed no
such dependency. Upon closer investigation it was
determined that the dominant error term resulted from low



frequency multipath affecting the post-processed results.
Thus, the observed decorrelation function describes the
measurement errors rather than the ionosphere. It would
be more accurate to say that the decorrelation of the
nominal CONUS ionosphere is bounded by 35 cm about a
plane.

For disturbed days, the decorrelation function may have
the same form but with higher values (b could be more
than ten times higher for severe storms). Alternately the
decorrelation function could increase with distance,
indicating the presence of significant curvature. On these
days the nominal decorrelation function (1) will not be an
adequate description of the ionosphere. Figure 2 shows
data for a disturbed day. Note the change in scale relative
to Figure 1.

ESTIMATION OF DELAY AND ERROR

We wish to determine the delay and confidences for an
Ionospheric Grid Point (IGP) given N Ionospheric Pierce
Point (IPP) measurements and confidences within a certain
cutoff radius around that IGP. We will use vector
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as individual IPP measurements are assumed to be
otherwise uncorrelated.

The vertical ionospheric delay estimate at the IGP will be
a linear combination of the IPP measurements. Provided
we have sufficient measurements, this can be done to
arbitrary order. The decorrelation data, however, indicates
that a first order (planar) fit is most appropriate for quiet
days. A zeroth order (weighted average) fit fails to model
observed ionospheric structure and no second order
(quadratic) terms are evident in the data for nominal days.
In addition, over the radii of interest, it would be very
difficult to distinguish quadratic terms from planar ones.

We will use a local cartesian frame whose origin is at the
IGP and whose x-axis aligns with the East direction at the
IGP and whose y-axis aligns with the North. The states
are the vertical delay at the IGP, the slope in the East
direction and the slope in the North direction. In the
region about the IGP the ionosphere is estimated by

iv,IGP(x’Y) =8y +8; x+dyy &)

The observation matrix is given by

o o~
1 1°P,,1GP E IPP, IGP N
~ N

G= 1 PP, ,IGP ‘E PR, IGP ‘N ©
N ~
1 dIPP,,,IGl’ ‘E dm’,‘ JIGP ‘N

We can solve for the planar coefficients

- T
(4 & &2]=[(G‘W~GT)!~G~W-Iv,m,] Q)
and find the delay estimate at the IGP given by
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and the formal error on the estimate is
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Thus, given a set of measurements we can generate the
vertical correction and confidence factor for a vertical delay
at that grid point under nominal conditions.
Unfortunately, the ionosphere is not always in its



nominal state and we must protect all slant delays which
may be interpolated from this IGP. The following
sections address these additional terms, which must be
incorporated in our final confidence.

IRREGULARITY DETECTION

We have based our delay and confidence estimation on a
local planar model with uncertainties bounded by a 35 cm
standard deviation. Therefore, we will define irregular
ionospheric behavior to be any condition that cannot be
accurately described by such a model. This may not
follow conventional descriptions of ionospheric events,
which seek to distinguish events by their physical cause
(storms, irregularities, scintillation, etc.). Here, we are
only interested in events which invalidate the confidence
calculation (9). A storm which causes a steep gradient,
but is well modeled and bounded by (8) and (9) requires no
special attention from WAAS. However, an event which
violates our confidence modeling, must be recognized and
treated. We generically describe all such events as
irregularities and must formulate a means to detect them.

Fortunately, there is a well established mechanism for
determining if measurements are consistent with the
model. This test is known as a chi-square consistency
check or “goodness-of-fit” test. Since we know the
model, the measurement values, and their variances, we
can use the expected distribution of the residual error to
determine if they are consistent.

We investigated other irregularity detectors based on
spatial gradients. It has been observed that poor grid
modeling correlates strongly with large gradients. The
gradient detectors performed equivalently (and in some
cases better) on the data examined, but in the end, the chi-
square had the best analytical connection between the
threshold and the resulting error, and was chosen for that
reason.

The planar model can be evaluated around the IGP to
provide estimates for each IPP
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The chi-square statistic is defined as
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The chi-square statistic is a reliable indicator of the
“goodness of fit.” If either the input variances or the
model are incorrect, this measure will be affected
statistically. A parameter in the expected distribution is
the number of degrees of freedom of the statistic. This is
simply the number of measurements minus the degrees of
freedom in the model (three for 1st order). Given this
parameter and an allowable false alarm rate, Py,, we can
calculate a threshold value for the chi-square using its
known distribution [7] (see third column of Table 1). If
the chi-square statistic is above this value, it is likely that
there is a problem with the model, the measurements, or
both. The difficulty is detectability. A chi-square value
below the threshold does not automatically guarantee that
the model is valid.

v Ko Ko R,

2 0.2102 | 20.5150 | 97.5917
3 0.3811 22.4577 | 58.9339
4 0.5985 | 24.3219 | 40.6385
5 0.8571 26.1245 | 30.4799
6 1.1519 | 27.8772 | 24.2000
7 1.4787 | 29.5883 | 20.0091
8 1.8339 | 31.2641 | 17.0483
9 2.2142 | 32.9095 | 14.8629
10 2.6172 | 34.5282 | 13.1927
11 3.0407 | 36.1233 | 11.8800
12 3.4827 | 37.6973 | 10.8242
13 3.9416 | 39.2524 | 9.9584

14 4.4161 40.7902 | 9.2367

15 4.9048 | 42.3124 | 8.6266

16 5.4068 | 43.8202 | 8.1046

17 5.9210 | 45.3147 [ 7.6532

18 6.4467 | 46.7970 [ 7.2591

19 6.9830 | 48.2679 | 6.9122

20 7.5292 | 49.7282 | 6.6047

21 8.0849 | 51.1786 | 6.3302

22 8.6493 | 52.6197 | 6.0837

23 9.2221 54.0520 | 5.8611

24 9.8028 | 55.4760 [ 5.6592

25 10.3909 | 56.8923 | 5.4752

26 10.9861 | 58.3012 | 5.3068

27 11.5880 | 59.7031 | 5.1522

Table 1. For different degrees of freedom, v; the
lower bound, x., (Pnq = 103); threshold, ¥, (P, =
10°3); and inflation factor, R_.f”g, are given. Since a

planar fit is performed, v = N-3, where N is the number
of IPPs.



The chi-square test does protect against certain error
conditions, such as large errors on any single
measurement or moderate errors on all of the
measurements. However, if the errors are only slightly
larger than expected, the confidence bound predicted by (9)
will be optimistic but there is some probability that the
chi-square statistic will not exceed the threshold. When
the actual variances of the errors are larger than expected
(perhaps because the assumed decorrelation function does
not adequately describe the current state of the ionosphere),
we must determine the probability of missing this event
and inflate our bound as necessary.

WORST UNDETECTED DISTRIBUTION

There are many ways to model a failure. Non-planar
behavior in the ionosphére will result in unmodeled biases
in the residuals. Alternately, if some of the true variances
increase beyond their assumed values, the chi-square
distribution will increase, but still have some likelihood
of being below the threshold. A more generic failure
mode could contain a combination of deterministic biases
and increased variances distributed in various ways among
the IPPs. This approach would require use of the non-
central chi-square distribution. [7] We will restrict
ourselves to a pessimistic, but tractable model in which
all variances increase uniformly by the same factor, R

We can use the known distribution of this failure model to
determine the missed detection probability. This
probability, P4, is given by the integration of the new
distribution’s Probability Density Function (PDF) below
the threshold. Alternately, we can determine the required
value of R’ to achieve the specified Pp,g. From (11) we
can see that a constant term multiplying each variance
results in a new chi-square statistic which is equal to the
original value divided by this factor. The resulting
distribution is essentially unchanged, except that it is
stretched along the chi-square axis (see Figure 3).

To determine the numerical value of this factor, we must
concentrate on the lower bounds of the distribution. We
must have less than P4 of the new distribution below
the threshold. The factor, R .+ can be determined by
taking the ratio of the upper threshold to the lower bound

2 X IZ—PJ&
Rireg(Ppas Prug) =—3 (12)
B

where xi denotes the inverse of the Cumulative Density
Function (CDF), or the chi-square value that has p of the
distribution below it.
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Figure 3. The blue trace shows the expected
distribution for the chi-square variable. The black line
represents the threshold listed in Table 1. The red trace
corresponds to the worst case undetectable distribution
when all the variances are multiplied by 6.69 with a
corresponding P, , = 101,

Figure 3 depicts an example using nine degrees of freedom
with Py, set equal to 10 and P,,, equal to 10!, The
expected PDF is shown in blue. In this example,
Xows =279 , and x) =4.17, therefore R =6.69.
The chi-square distribution with the variances inflated by
ij is shown in red. As expected, only 10% of this new
distribution lies below the threshold value. Thus, under
our failure model, this is the worst distribution that could
escape detection with probability P,,;. We call this the
worst undetected distribution. In this example, the chi-
square check verifies that the actual distributions do not
uniformly have variances 6.69 times larger than the
expected values with a P,,; = 101,

Because this is the worst distribution the chi-square check
protects against, we must generate our confidence bounds
according to it. The variance in (9) must be multiplied by
ij to ensure that it guards against all distributions that
pass the chi-square check. Thus, we form the estimate and
perform the chi-square check assuming the quiet
decorrelation function. Then, if the fit passes this check,
we recalculate the confidence using the scaled distribution.
The scaled distribution is the best that we can protect to
the desired level of certainty.

The bounding variance for a raypath through that IGP is
given by

G%ound. IGP = Jrreg I:(G W GT) ]1 +Rr?'r¢g O'iemn_(l3)

where the first term accounts for the uncertainty in
estimating the plane, and the second term describes the




inherent uncertainty about that plane. Translation of the
confidence from the grid point to any point in the cell is
addressed later in the paper.

VALIDATION RESULTS

We also used the supertruth data to validate the algorithms
described above. We centered a planar fit around every IPP
in the supertruth sets. The IPP at the center was excluded
from the fit. In this way we had an independent truth
reference and could use the other data points to verify how
well they predicted the vertical delay at the excluded IPP.
The algorithm was executed creating a predicted delay (8),
a bounding confidence (9), and a chi square indication of
the “goodness-of-fit” (11).

Figure 4 shows the distribution of errors divided by the
square root of the bounding variance, here given by

Iv,IPP ~ v,ipP (1 4)

ot 2
J[(G-W G") ]“mdm,,

No R:mg term is used yet as we know that this is a quiet
ionospheric day and it is well modeled by the nominal
decorrelation function.

If the predicted vertical delays and bounding variances were
accurate, the resulting distribution should follow a zero-
mean unit-variance gaussian which is shown for reference
by the red line. As can be seen, the confidence estimate is
conservative; it dramatically overbounds at the tails. At
no time during the whole day is the error greater than 2.5
times the predicted standard deviation. The data is very
clean and gaussian in npature, but with clipped tails.
Although the algorithm was designed to have a false alarm
rate of 103, the chi-square value never exceeded its
threshold value during this day.

If the ionosphere always behaved in this manner, the
irregularity detector and the Rl.f”g term would be
unnecessary. Unfortunately, there are times when the
ionosphere is disturbed. During such events, the planar
approximation or decorrelation description may break
down. Figure 5 shows the same type of plot but for data
from April 6 and 7, and July 15 and 16 of 2000. These
days represent the worst CONUS ionospheric data for the
current solar peak. Now we see that the nominal
confidence bounds are inadequate. Errors can exceed 50
times the predicted standard deviation. It is for this reason
that we have implemented the chi-square check and the
variance inflation.

December 6, 1999

10"}
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Figure 4. The histogram of prediction error divided
by nominal predicted error (14) for December Gth,

1999, a nominal day.
April 6 & 7 and July 15 &16, 2000

Prob. of Occurrence

20 0
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Figure 5. The histogram of prediction error divided
by the nominal predicted error (14) for April 6&7 and
July 15&16, 2000, four severely disturbed days.

Figure 6 shows the data now for only those points whose
chi-square statistic was below the threshold. Data that
failed the check are now excluded. As expected, this
improves the distribution but does not remove all outliers.
The true error can still be greater than 10 times the
predicted standard deviation. Data with worse than
nominal distribution still has some chance to pass the chi-
square test. If we apply the Rjres inflation term, the new
distribution becomes

Iv,IPP - Iv,IPP (15)
~1
Rirreg ’ \/[(G ‘W GT) :|1 ) + o.gecorr

as shown in Figure 7. This final set is well described by
the inflated variance. This full process of calculating the
nominal estimates, applying a chi-square check and
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Figure 6. The histogram of the error ratio (14) for the
disturbed days when data that failed the chi-square

check is excluded.
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Figure 7. The histogram of the error ratio (15) for the
disturbed days when data that failed the chi-square
check is excluded and the predicted variance is inflated
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inflating the bounding confidence for those that pass, is
necessary to protect the user.

Figure 7 contains some outliers which do not match the
distribution of the majority of the points. These points
extend out to four standard deviations, still safe, but
uncomfortably large. Upon closer examination it was
determined that the error was not very large (< 5 m), but
that the confidence had grown too small. For these test
runs the off-diagonal elements were left out of the
weighting matrix. Operationally these bias correlation
terms will be included, but here their omission allowed
the formal error to become too small. Including these
terms will worsen availability, but result in a safer
distribution.

Values that fail the chi square test must be treated
separately. Failed IGPs could be set to “Do Not Use” or

Figure 8 The location of all IPPs within 10° of the IGP
are shown by the blue asterisks. The mesh is the
evaluation of (16) for locations within the 5° square
surrounding the IGP. Also shown is a projection of this
mesh at the bottom. The maximum uncertainty of 0.35 m
within this square occurs at the Southwest corner. The
O v would need to be at least this large.

could be recalculated using a different model. Another
possibility is to exploit the known physical limitations of
the ionosphere. The largest vertical delay observed in
CONUS is well below 64 m. Therefore, a one sigma
bound of ~12 m would protect any true error that fits
within the MOPS message format to within 5.33 sigma
or to 107, Thus, provided separate arguments or
monitoring can be made to protect against correlated
measurements on multiple satellites, it could be argued
that the largest GIVE index in the MOPS would always
be safe.

SPATIAL ERROR

The broadcast variance, termed o, must bound the
worst error that a user may experience in the four
surrounding cells after interpolating from the
corresponding IGPs. For most of the grid, this problem
can be simplified by instead concentrating on the 5° by 5°
square centered on the IGP. The value of O érws must be
at least as large as the largest value in this square. For the
planar model, the formal error will have a global
minimum near the weighted centroid of the measurements
and will increase as one moves away from this point.
Therefore, the maximum uncertainty over the central
square will be at the farthest distance from the centroid.
This will correspond to one of the four corners as
illustrated in Figure 8. Thus the GIVE value can be
determined from the corner with greatest uncertainty.

The formal error for the IPP estimate is
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The algorithms described above are the complete set of
steps from pierce point measurement to GIVE calculation.

The availability is a strong function of cutoff radius. The
center of the country is well served by smaller radii (~500
km), but the edges will likely require greater radii (1000 -
2000 km) to support sufficient measurements.
Additionally the uncertainty at the edges will be high as
most of the measurements will be to one side of the IGP
resulting in poorer observation geometry. When
combined with the lower overall number of
measurements, the edge IGPs will have particularly poor
coverage. Larger radii offer the advantage of a larger
number of IPPs which lower the formal error and enhance
the consistency check. The disadvantages of larger radii
are increased computational load and greater averaging of
the ionosphere. In addition, small irregularities are less
likely to trip the detector.

UNDERSAMPLED THREAT

The detector outlined above works very well provided the
irregularity is sampled by several IPPs. This is expected
to be true as it has been observed that irregularities occur
on multiple scales simultaneously. If the ionosphere is
disturbed in one region, it is likely disturbed around that
region as well. Thus, even if there is a significant but
very localized disturbance, it is expected the surrounding
ionosphere will exhibit some irregular behavior. For this
reason, even though the reference station IPPs may not
sample the worst location in the ionosphere, if the IPPs
are sufficiently dense, the surrounding measurements will
trigger the detector. If the IPPs are not particularly dense,
as at the edge of coverage, additional protection may be
needed.

We are in the process of defining a threat model which
describes the worst case ionosphere as a function of scale
length, given that the chi-square detector has not tripped.
This investigates disturbances that occur in isolation, that
is, without the accompanying structure that guarantees
tripping of the detector. Such disturbances will be much
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Figure 9. A two dimensional histogram representing
the distribution of differential vertical delays, after a
planar fit has been removed, versus IPP separation.
This data is for a severe storm day where the chi-square
detector has been used to remove locally disturbed
ionosphere. Compare to Figures I and 2.

smaller in magnitude than features that can develop during
fully disturbed conditions. The magnitude is expected to
scale with the size of the region in which they are
confined.

Undersampled threats would escape any detector and are
not limited to the chi-square check. If we have not
sampled a threat, we cannot identify it. Threats of this
nature must be treated by off-line analysis, where they are
rigidly bounded and then incorporated as though always
present. The extent of these threats is determined by the
density of measurements provided by the reference
network. We must ensure that our network is sufficiently
dense as to keep the overall effect small.

As an example of the processing required, we used the
validation processing previously described, to exclude
certain points from a new calculation of the decorrelation
function. Here, if the surrounding ionosphere, excluding
the specific IPP, tripped the chi-square detector, then the
specific IPP is not used to form the new decorrelation
plot. Figure 9 shows the decorrelation histogram for the
July 15, 2000 severe storm using only IPPs whose
surrounding ionosphere did not trip the detector. As can
be seen this decorrelation plot closely resembles the quiet
data in Figure 1. Thus, none of the IPPs for the worst
day sampled an isolated event inconsistent with the
nominal assumptions. We will continue to process more
storm days as they occur, and refine the quantitative model
as a function of scale length. We are also investigating
other metrics to ensure that the threat is properly
characterized.



RATE OF CHANGE

The ionospheric corrections and confidences are expected
to be sent at the slow update rate of once every five
minutes. Therefore we need to ensure that the bounding
variance is applicable over the lifetime of the message. In
addition we need to continue to monitor already broadcast
information to detect sudden changes in the ionosphere.
This is described in another component of the threat model
that examines the time rate of change of the ionosphere.
Knowing how quickly the ionosphere can change allows
us to determine how much the variance needs to be
increased as well as the update rates for testing the validity
of old messages.

As in the previous section we want to know the worst rate
of change just prior to tripping the chi-square detector.
We know that the highest rates of change occur during
severely disturbed periods. However, if the chi-square
detector has already tripped, it is providing protection
against these maximum rates of change. We need to
determine the maximum rate of change when the chi-
square has not tripped. This latter value should be much
smaller than if we did not exploit the chi-square check.
When fully detailed, the threat model will provide
histograms of the change in vertical delay values over
given periods of time, analogous to the spatial
decorrelation data already presented. From this
information we will be able to set the detector test rates
and the additional variance term which will could be added
to Equation (17).

PROTOTYPE RESULTS

The algorithm described in this paper has been
implemented on the prototype of the operational system.
This prototype uses the actual WAAS reference station
network and real-time estimates of the noise levels.
Figure 10 shows the results for July 11, 2000, a quiet
day. As can be seen, the true distribution is quite similar
in appearance to the theoretical expectation (red line). The
most noticeable discrepancy results from the overbounding
of the input noise variances (2). The conservative real-
time estimates of these values results in a chi-square value
which is smaller than would be obtained if the variances
were exactly known, thus shifting the distribution to the
left of theory. Therefore, this figure indicates that the
computed formal error is also conservative, as the input
estimated variances are clearly larger than the true values.
The shape of the distribution follows expectation and the
false alarm rate for this quiet day is better than required.
While the integrity analysis needs to be repeated for the
prototype code, the combination of off-line safety
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Figure 10. Histogram of the chi-square statistic for a
quiet day on the prototype system. The red line
indicates the theoretical result. Since the noise
estimates tend to be conservative, the observed
distribution is shifted to the left of the theory.

validation of the “supertruth” data and the low false alarm
rate of the real-time prototype code give us a high degree
of confidence for the final stages of validation.

CONCLUSIONS

It has been shown that the nominal ionosphere over
CONUS is well behaved and easily modeled by the MOPS
grid. A high level of performance is achievable under
quiet conditions. However, we have also observed
conditions which are not well modeled by the grid. A
definition of irregular behavior has been provided. This
definition is aimed at the WAAS MOPS broadcast
mechanism and the internal ionospheric model. A method
for identifying irregular behavior has been derived and
validated. This method conservatively assumes that the
ionosphere is always distributed in the worst undetectable
manner unless the chi-square statistic exceeds a threshold.
When the chi-square value is larger than the threshold, the
bounding variance is increased even further. Thus
integrity is firmly maintained.

We have shown that for quiet days this method is
exceedingly conservative. However, on severely disturbed
days the worst case assumptions are approached and
therefore necessary to protect the user. This algorithm
preserved integrity even on the worst observed storm days
of the current solar cycle. This algorithm was analytically
derived before the storms took place and performed as
expected for these severe disturbances. The single
empirical parameter, o, ., was determined using data
from quiet days. Finally, we have implemented this
algorithm on the prototype of the operational system and
found it to match expectations. In particular, the false



alarm rates are better than the requirement for quiet days.
Combined with the successful off-line integrity analysis,
we feel that this algorithm is capable of meeting the
stringent requirements for providing differential corrections
and bounds for vertical aircraft guidance.
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